	(а	(1)	volume / moles / molecules of reactants and products are different	[1]
			second reaction volume / moles / molecules of reactants and products are the same	[1]
		(ii)	first reaction (forward) reaction is endothermic second reaction (forward) reaction is exothermic	[1] [1]
	(b)		$C_8H_{18} \rightarrow 2C_4H_8 + H_2$	[1]
		(ii)	$2H^{+} + 2e \rightarrow H_{2}$	[2]
			or $2H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ accept: –2e on right hand side accept: e note: not balanced = 1	
		(iii)	chlorine / Cl_2 / cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / HC l / bacteria / sterilising water / chlorination of water / swimming pools / pesticides herbicides / insecticides / germicides / pharmaceuticals	
			sodium hydroxide/NaOH	[1]
			cond: making soap / degreasing / making paper / detergents / bio-diesel / paint stripper clearing drains / alumina from bauxite / oven cleaner / bleach	er / [1]
2	(a) (i)	ions cannot move / no free ions in solid state ions can move / free ions in liquid state note: ions can only move in liquid state = 2	[1] [1]
		(ii)	reduce melting point / reduce energy costs / better conductor when dissolved in cryolic	ite [1]
		(iii)	burns in oxygen / reacts with oxygen / oxidised by oxygen / forms carbon dioxide / for carbon monoxide	rms [1]
		(iv)	high melting point / inert / unreactive	[1]
	(b) pro	otective / unreactive / resists / prevents corrosion / non-porous (layer)	[1]
		of	(aluminium) oxide	[1]
	(с	;) (i)	good conductor (of electricity) low density / light / lightweight	[1] [1]
		(ii)	steel core (increased) strength / prevent sagging / to increase separation of pylons / support	[1]

3 (a Any one of: $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ for correct equation (2) not balanced = (1) only

any four of:

coke burns to form carbon dioxide / $C + O_2 \rightarrow CO_2$

this reacts with more carbon to form carbon monoxide / C + $CO_2 \rightarrow 2CO$

calcium carbonate decomposes to form calcium oxide and carbon dioxide / $CaCO_3 \rightarrow CaO + CO_2$

calcium oxide / calcium carbonate reacts with silica / silicon oxide / silicon(IV) oxide (in ore) to form calcium silicate / slag / CaO + SiO₂ \rightarrow CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

the reaction between carbon and oxygen is exothermic / produces heat / coke is used as a fuel / the slag floats on the (molten) iron / the slag and molten iron can be run off separately

- (b) (i) greenhouse effect / CO₂ is a greenhouse gas [1] global warming / ice caps melting / suitable example [1]
 - (ii) burning or combustion of charcoal produces carbon dioxide [1] trees use carbon dioxide (in photosynthesis)
 - (iii) cathode reaction $Fe^{3+} + 3e \rightarrow Fe$ [1]
 - anode reaction $2O^2 \rightarrow O_2 + 4e$ [2] not balanced = (1) only

[Total: 13]

[6]

(a) (i)	oxygen; carbon dioxide / fluorine / carbon monoxide;	[1] [1]
(ii)	· · · · · · · · · · · · · · · · · · ·	[1]
(iii)		[1] [1]
(b) (i)	chlorine formed at anode (positive electrode); (note: can be awarded from a correct incorrect equation with Cl_2 as the only substance on the right as long as anode mentioned.) hydrogen formed at cathode (negative electrode); (note: can be awarded from a correct or incorrect equation with H_2 as the only substance on the right as long as cathode mentioned.) one correct half equation either $2Cl \rightarrow Cl_2 + 2e$ or $2H^+ + 2e \rightarrow H_2$ solution remaining contains Na^+ and OH / sodium and hydroxide ions / $NaOH$ / sodiuhydroxide left behind/remains in solution; note: if a mercury cathode is specified electrolysis / electrolyte / electrodes / anode / cathode / electricity / cell; chlorine formed at anode (positive electrode); (note: can be awarded from a correct incorrect equation with Cl_2 as the only substance on the right as long as anode mentioned.) sodium formed at cathode; (note: can be awarded from a correct or incorrect equation with Na as the only substance on the right as long as cathode is mentioned.) one correct half equation at anode i.e. $2Cl \rightarrow Cl_2 + 2e$ or at cathode $Na^+ + e \rightarrow 0$	e is [1] ect [1] ect [1] [1] [1] [1] [1] [1] [1] Na [1] [1]
(ii)	H_2 / H / hydrogen and making ammonia / making margarine / hardening fats / fue energy source / cryogenics / welding; Cl_2 / Cl / chlorine and (making) bleach / water treatment / kill bacteria (in water) / wa purification / swimming pools / making solvents / making PVC / making weed killed making disinfectants / making hydrochloric acid / HC l / making herbicides / pesticided insecticides;	[1] ater er /

4

5	(a (i)	correct arrow from negative terminal of battery or from anode;	[1]
	(ii)	from battery / power supply / cell; from negative electrode of battery to external circuit; or from anode; from iodide ion losing electron or oxidation of anion;	[1] [1]
	(iii)	ions cannot move in solid / ions can move in liquid;	[1]
	(b) cc	opper; hanges to) sulfuric acid;	[1] [1]
		ydrogen; changes to) potassium hydroxide;	[1] [1]
	(c) (i)	$2H^{+} + 2e \rightarrow H_{2}$ not balanced = [1]	[2]
	(ii)	$4OH \rightarrow O_2 + 2H_2O + 4e$	[1]
	(iii)	water used up;	[1]
	` '	is a cell; vdrogen reacts with oxygen;	[1] [1]
	th	is reaction produces energy / is exothermic / produces flow of electrons /	
	ch	anges chemical energy to electrical energy;	[1]

[Total: 15]